Hornerova–Wadsworthova–Emmonsova reakce

Hornerova–Wadsworthova–Emmonsova reakce je reakce v organické chemii, při které reagují fosfonátové karboanionty s aldehydy nebo ketony, přičemž vznikají (stereoselektivně) hlavně E-alkeny.

Hornerova–Wadsworthova–Emmonsova reakce
Hornerova–Wadsworthova–Emmonsova reakce
Během Hornerovy–Wadsworthovy–Emmonsovy reakce dochází k deprotonaci.

V roce 1958 popsal německý chemik Leopold Horner pozměněnou Wittigovu reakci, při níž využíval karboanionty stabilizované fosfonátovými skupinami.[1][2] Následně William S. Wadsworth a William D. Emmons sestavili definici tohoto typu reakce.[3][4]

V porovnání s ylidy fosfonia, použitými při Wittigově reakci, jsou karboanionty stabilizované fosfonátovými skupinami silnějšími nukleofily, ovšem slabšími zásadami. Tyto karboanionty mohou být alkylovány. Na rozdíl od reakce s ylidy fosfonia lze dialkylfosfoniovou sůl vznikající jako vedlejší produkt snadněji odstranit kapalinovou extrakcí s použitím vody.

Bylo vydáno několik prací zabývajících se touto reakcí.[5][6][7][8][9][10]

Mechanismus

Hornerova–Wadsworthova–Emmonsova reakce začíná deprotonací fosfonátu za vzniku fosfonátového karboaniontu 1. Nukleofilní adicí fosfonátu na aldehyd 2 nebo keton vznikne meziprodukt 3a nebo 3b; tento krok určuje rychlost reakce.[11] Pokud je skupinou R2 vodíkový atom, tak se meziprodukty 3a a 4a, případně 3b a 4b mohou přeměňovat jeden v druhý.[12] Nakonec eliminací 4a a 4b vznikne E-alken 5 a Z-alken 6. Vedlejším produktem je dialkylfosfát.

Mechanismus Hornerovy-Wadsworthovy-Emmonsovy reakce
Mechanismus Hornerovy-Wadsworthovy-Emmonsovy reakce

Poměr množství izomerních alkenů 5 a 6 záleží na stereochemii počáteční adice karboaniontu a na schopnosti meziproduktů vytvořit chemickou rovnováhu.

K poslednímu kroku, kterým je eliminační reakce, je nutné, aby se na pozici alfa nacházela skupina, která odtahuje elektrony. Pokud by nebyla přítomna, tak by konečnými produkty byly α-hydroxyfosfonáty 3a a 3b,[13] které ovšem lze na alkeny reakcí s diisopropylkarbodiimidem.[14]

Stereoselektivita

Při Hornerově–Wadsworthově–Emmonsova reakci vznikají přednostně (ve větším množství) E-alkeny. Obecně platí, že čím lepší je rovnováha mezi meziprodukty, tím výraznější je E-alkenů mezi produkty.

Disubstituované alkeny

Byla provedena systematická studie reakcí methyl-2-(dimethylfosfono)acetátu s různými aldehydy.[15] Ukázalo se, že by bylo možné pozměnit stereochemii produktů, aniž by se změnila struktura fosfonátu. E-stereoselektivita je výraznější za následujících podmínek:

  • Sterické efekty vyvolávané aldehydem jsou výraznější,
  • reakční teplota je vyšší (v tomto případě 23 °C oproti −78 °C) nebo
  • jako rozpouštědlo se místo tetrahydrofuranu (THF) použije dimethoxyethan (DHE).

E-stereoselektivita je také ovlivňována druhem použité soli, klesá v řadě Li > Na > K.

Trisubstituované alkeny

Sterické jevy vytvářené fosfonátem a skupinami odtahujícími elektrony mají velký význam při reakcích α-rozvětvených fosfonátů s alifatickými aldehydy.[16]

Příklad Hornerovy–Wadsworthovy–Emmonsovy reakce při použití rozvětvených fosfonátů
Příklad Hornerovy–Wadsworthovy–Emmonsovy reakce při použití rozvětvených fosfonátů
R1 R2 Poměr množství alkenů
( E : Z )
Methyl Methyl 5 : 95
Methyl Ethyl 10 : 90
Ethyl Ethyl 40 : 60
Isopropyl Ethyl 90 : 10
Isopropyl Isopropyl 95 : 5

Aromatické aldehydy poskytují téíměř výhradně E-produkty. Pokud je třeba z těchto aldehydů získat Z-alkeny, je nutné provést Stillovu–Gennariovu modifikaci (popsanou níže).

Obměny

Substráty citlivé na zásady

Jelikož mnoho substrátů s hydridem sodným, tak bylo vyvinuto několik variant Hornerovy–Wadsworthovy–Emmonsovy reakce probíhající za mírnějších podmínek; například za použití chloridu lithného a 1,8-diazabicyklo(5.4.0)undec-7-enu (DBU).[17] Další možností je použití lithných či hořečnatých halogenidůtriethylaminem;.[18] lze přitom použít i další zásady, jako jsou [19][20][21]

Stillova–Gennariova modifikace

W. Clark Still a C. Gennari objevili variantu Hornerovy–Wadsworthovy–Emmonsovy reakce, při které vznikají Z-alkeny s vysokou stereoselektivitou.[22] Za použití fosfonátů se skupinami odtahujícími elektrony (trifluoroethyl[23]) a značně disociačních podmínek (hexamethyldisilazid draselný a 18-crown-6 v tetrahydrofuranu) vznikají téměř výhradně Z-alkeny.

Stillova–Gennariova modifikace Hornerovy–Wadsworthovy–Emmonsovy reakce
Stillova–Gennariova modifikace Hornerovy–Wadsworthovy–Emmonsovy reakce

Bylo zjištěno, že použití fosfonátů s nízkou elektronovou hustotou urychluje eliminaci oxafosfetanových meziproduktů.[24]

Reference

V tomto článku byl použit překlad textu z článku Horner–Wadsworth–Emmons reaction na anglické Wikipedii.

  1. Leopold Horner; Hoffmann, H. M. R.; Wippel, H. G. Ber. 1958, 91, 61–63.
  2. Horner, L.; Hoffmann, H. M. R.; Wippel, H. G.; Klahre, G. Ber. 1959, 92, 2499–2505.
  3. Wadsworth, W. S., Jr.; Emmons, W. D. Journal of the American Chemical Society 1961, 83, 1733. (DOI:10.1021/ja01468a042Je zde použita šablona {{DOI}} označená jako k „pouze dočasnému použití“.)
  4. Wadsworth, W. S., Jr.; Emmons, W. D. Organic Syntheses, Coll. Vol. 5, p.547 (1973); Vol. 45, p.44 (1965). (Article)
  5. Wadsworth, W. S., Jr. Org. React. 1977, 25, 73–253. (Review)
  6. Boutagy, J.; Thomas, R. Chemical Reviews 1974, 74, 87–99. (Review, DOI:10.1021/cr60287a005Je zde použita šablona {{DOI}} označená jako k „pouze dočasnému použití“.)
  7. Kelly, S. E. Compr. Org. Synth. 1991, 1, 729–817. (Review)
  8. B. E. Maryanoff; Reitz, A. B. Chem. Rev. 1989, 89, 863–927. (Review, DOI:10.1021/cr00094a007Je zde použita šablona {{DOI}} označená jako k „pouze dočasnému použití“.)
  9. Bisceglia, J. A., Orelli, L. R. Current Organic Chemistry 2012, 16, 2206–2230 (Review)
  10. Bisceglia, J. A., Orelli, L. R. Current Organic Chemistry 2015, 19, 744–775 (Review)
  11. Larsen, R. O.; Aksnes, G. Phosphorus Sulfur 1983, 15, 218–219.
  12. Lefèbvre, G.; Seyden-Penne, J. ChemComm 1970, 1308–09.
  13. Corey, E. J.; Kwiatkowski, G. T. Journal of the American Chemical Society 1966, 88, 5654–56. (DOI:10.1021/ja00975a057Je zde použita šablona {{DOI}} označená jako k „pouze dočasnému použití“.)
  14. Reichwein, J. F.; Pagenkopf, B. L. Journal of the American Chemical Society 2003, 125, 1821–24. (DOI:10.1021/ja027658sJe zde použita šablona {{DOI}} označená jako k „pouze dočasnému použití“.)
  15. Thompson, S. K.; Heathcock, C. H. The Journal of Organic Chemistry 1990, 55, 3386–88. (DOI:10.1021/jo00297a076Je zde použita šablona {{DOI}} označená jako k „pouze dočasnému použití“.)
  16. Nagaoka, H.; Kishi, Y. Tetrahedron 1981, 37, 3873–3888.
  17. Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Letters 1984, 25, 2183–2186.
  18. Rathke, M. W.; Nowak, M. J. Org. Chem. 1985, 50, 2624–2626. (DOI:10.1021/jo00215a004Je zde použita šablona {{DOI}} označená jako k „pouze dočasnému použití“.)
  19. Paterson, I.; Yeung, K.-S.; Smaill, J. B. Synlett 1993, 774.
  20. Simoni, D.; Rossi, M.; Rondanin, R.; Mazzali, A.; Baruchello, R.; Malagutti, C.; Roberti, M.; Invidiata, F. P. Organic Letters 2000, 2, 3765–3768.
  21. Blasdel, L. K.; Myers, A. G. Org. Letters 2005, 7, 4281–4283.
  22. Still, W. C.; Gennari, C. Tetrahedron Letters 1983, 24, 4405–4408.
  23. Patois, C.; Savignac, P.; About-Jaudet, E.; Collignon, N. Organic Syntheses, Coll. Vol. 9, p.88 (1998); Vol. 73, p.152 (1996). ([1] Archivováno 30. 9. 2007 na Wayback Machine.)
  24. Ando, K. J. Org. Chem. 1997, 62, 1934–1939. (DOI:10.1021/jo970057cJe zde použita šablona {{DOI}} označená jako k „pouze dočasnému použití“.)

Externí odkazy

  • Logo Wikimedia Commons Obrázky, zvuky či videa k tématu Hornerova–Wadsworthova–Emmonsova reakce na Wikimedia Commons