Chandrasekhar–Wentzel lemma

In vector calculus, Chandrasekhar–Wentzel lemma was derived by Subrahmanyan Chandrasekhar and Gregor Wentzel in 1965, while studying the stability of rotating liquid drop.[1][2] The lemma states that if S {\displaystyle \mathbf {S} } is a surface bounded by a simple closed contour C {\displaystyle C} , then

L = C x × ( d x × n ) = S ( x × n ) n   d S . {\displaystyle \mathbf {L} =\oint _{C}\mathbf {x} \times (d\mathbf {x} \times \mathbf {n} )=-\int _{\mathbf {S} }(\mathbf {x} \times \mathbf {n} )\nabla \cdot \mathbf {n} \ dS.}

Here x {\displaystyle \mathbf {x} } is the position vector and n {\displaystyle \mathbf {n} } is the unit normal on the surface. An immediate consequence is that if S {\displaystyle \mathbf {S} } is a closed surface, then the line integral tends to zero, leading to the result,

S ( x × n ) n   d S = 0 , {\displaystyle \int _{\mathbf {S} }(\mathbf {x} \times \mathbf {n} )\nabla \cdot \mathbf {n} \ dS=0,}

or, in index notation, we have

S x j n   d S k = S x k n   d S j . {\displaystyle \int _{\mathbf {S} }x_{j}\nabla \cdot \mathbf {n} \ dS_{k}=\int _{\mathbf {S} }x_{k}\nabla \cdot \mathbf {n} \ dS_{j}.}

That is to say the tensor

T i j = S x j n   d S i {\displaystyle T_{ij}=\int _{\mathbf {S} }x_{j}\nabla \cdot \mathbf {n} \ dS_{i}}

defined on a closed surface is always symmetric, i.e., T i j = T j i {\displaystyle T_{ij}=T_{ji}} .

Proof

Let us write the vector in index notation, but summation convention will be avoided throughout the proof. Then the left hand side can be written as

L i = C [ d x i ( n i x j + n k x k ) + d x j ( n i x j ) + d x k ( n i x k ) ] . {\displaystyle L_{i}=\oint _{C}[dx_{i}(n_{i}x_{j}+n_{k}x_{k})+dx_{j}(-n_{i}x_{j})+dx_{k}(-n_{i}x_{k})].}

Converting the line integral to surface integral using Stokes's theorem, we get

L i = S { n i [ x j ( n i x k ) x k ( n i x j ) ] + n j [ x k ( n j x j + n k x k ) x i ( n i x k ) ] + n k [ x i ( n i x j ) x j ( n j x j + n k x k ) ] }   d S . {\displaystyle L_{i}=\int _{\mathbf {S} }\left\{n_{i}\left[{\frac {\partial }{\partial x_{j}}}(-n_{i}x_{k})-{\frac {\partial }{\partial x_{k}}}(-n_{i}x_{j})\right]+n_{j}\left[{\frac {\partial }{\partial x_{k}}}(n_{j}x_{j}+n_{k}x_{k})-{\frac {\partial }{\partial x_{i}}}(-n_{i}x_{k})\right]+n_{k}\left[{\frac {\partial }{\partial x_{i}}}(-n_{i}x_{j})-{\frac {\partial }{\partial x_{j}}}(n_{j}x_{j}+n_{k}x_{k})\right]\right\}\ dS.}

Carrying out the requisite differentiation and after some rearrangement, we get

L i = S [ 1 2 x k x j ( n i 2 + n k 2 ) + 1 2 x j x k ( n i 2 + n j 2 ) + n j x k ( n i x i + n k x k ) n k x j ( n i x i + n j x j ) ]   d S , {\displaystyle L_{i}=\int _{\mathbf {S} }\left[-{\frac {1}{2}}x_{k}{\frac {\partial }{\partial x_{j}}}(n_{i}^{2}+n_{k}^{2})+{\frac {1}{2}}x_{j}{\frac {\partial }{\partial x_{k}}}(n_{i}^{2}+n_{j}^{2})+n_{j}x_{k}\left({\frac {\partial n_{i}}{\partial x_{i}}}+{\frac {\partial n_{k}}{\partial x_{k}}}\right)-n_{k}x_{j}\left({\frac {\partial n_{i}}{\partial x_{i}}}+{\frac {\partial n_{j}}{\partial x_{j}}}\right)\right]\ dS,}

or, in other words,

L i = S [ 1 2 ( x j x k x k x j ) | n | 2 ( x j n k x k n j ) n ]   d S . {\displaystyle L_{i}=\int _{\mathbf {S} }\left[{\frac {1}{2}}\left(x_{j}{\frac {\partial }{\partial x_{k}}}-x_{k}{\frac {\partial }{\partial x_{j}}}\right)|\mathbf {n} |^{2}-(x_{j}n_{k}-x_{k}n_{j})\nabla \cdot \mathbf {n} \right]\ dS.}

And since | n | 2 = 1 {\displaystyle |\mathbf {n} |^{2}=1} , we have

L i = S ( x j n k x k n j ) n   d S , {\displaystyle L_{i}=-\int _{\mathbf {S} }(x_{j}n_{k}-x_{k}n_{j})\nabla \cdot \mathbf {n} \ dS,}

thus proving the lemma.

References

  1. ^ Chandrasekhar, S. (1965). "The Stability of a Rotating Liquid Drop". Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 286 (1404): 1–26. doi:10.1098/rspa.1965.0127.
  2. ^ Chandrasekhar, S.; Wali, K. C. (2001). A Quest for Perspectives: Selected Works of S. Chandrasekhar: With Commentary. World Scientific.