Fejér's theorem

In mathematics, Fejér's theorem,[1][2] named after Hungarian mathematician Lipót Fejér, states the following:[3]

Fejér's Theorem — Let f : R C {\displaystyle f:\mathbb {R} \to \mathbb {C} } be a continuous function with period 2 π {\displaystyle 2\pi } , let s n ( f ) {\displaystyle s_{n}(f)} be the nth partial sum of the Fourier series of f {\displaystyle f} , and let σ n ( f ) {\displaystyle \sigma _{n}(f)} be the sequence of Cesàro means of the sequence s n ( f ) {\displaystyle s_{n}(f)} , that is the sequence of arithmetic means of s 0 ( f ) , . . . , s n ( f ) {\displaystyle s_{0}(f),...,s_{n}(f)} . Then the sequence σ n ( f ) {\displaystyle \sigma _{n}(f)} converges uniformly to f {\displaystyle f} on R {\displaystyle \mathbb {R} } as n tends to infinity.

Explanation of Fejér's Theorem's

Explicitly, we can write the Fourier series of f as

f ( x ) = n = c n e i n x {\displaystyle f(x)=\sum _{n=-\infty }^{\infty }c_{n}\,e^{inx}}
where the nth partial sum of the Fourier series of f may be written as

s n ( f , x ) = k = n n c k e i k x , {\displaystyle s_{n}(f,x)=\sum _{k=-n}^{n}c_{k}e^{ikx},}

where the Fourier coefficients c k {\displaystyle c_{k}} are

c k = 1 2 π π π f ( t ) e i k t d t . {\displaystyle c_{k}={\frac {1}{2\pi }}\int _{-\pi }^{\pi }f(t)e^{-ikt}dt.}

Then, we can define

σ n ( f , x ) = 1 n k = 0 n 1 s k ( f , x ) = 1 2 π π π f ( x t ) F n ( t ) d t {\displaystyle \sigma _{n}(f,x)={\frac {1}{n}}\sum _{k=0}^{n-1}s_{k}(f,x)={\frac {1}{2\pi }}\int _{-\pi }^{\pi }f(x-t)F_{n}(t)dt}

with Fn being the nth order Fejér kernel.

Then, Fejér's theorem asserts that

lim n σ n ( f , x ) = f ( x ) {\displaystyle \lim _{n\to \infty }\sigma _{n}(f,x)=f(x)}

with uniform convergence. With the convergence written out explicitly, the above statement becomes

ϵ > 0 n 0 N : n n 0 | f ( x ) σ n ( f , x ) | < ϵ , x R {\displaystyle \forall \epsilon >0\,\exists \,n_{0}\in \mathbb {N} :n\geq n_{0}\implies |f(x)-\sigma _{n}(f,x)|<\epsilon ,\,\forall x\in \mathbb {R} }

Proof of Fejér's Theorem

We first prove the following lemma:

Lemma 1 — The nth partial sum of the Fourier series s n ( f , x ) {\displaystyle s_{n}(f,x)} may be written using the Dirichlet Kernel as: s n ( f , x ) = 1 2 π π π f ( x t ) D n ( t ) d t {\displaystyle s_{n}(f,x)={\frac {1}{2\pi }}\int _{-\pi }^{\pi }f(x-t)\,D_{n}(t)\,dt}

Proof: Recall the definition of D n ( x ) {\displaystyle D_{n}(x)} , the Dirichlet Kernel:

D n ( x ) = k = n n e i k x . {\displaystyle D_{n}(x)=\sum _{k=-n}^{n}e^{ikx}.}
We substitute the integral form of the Fourier coefficients into the formula for s n ( f , x ) {\displaystyle s_{n}(f,x)} above

s n ( f , x ) = k = n n c k e i k x = k = n n [ 1 2 π π π f ( t ) e i k t d t ] e i k x = 1 2 π π π f ( t ) k = n n e i k ( x t ) d t = 1 2 π π π f ( t ) D n ( x t ) d t . {\displaystyle s_{n}(f,x)=\sum _{k=-n}^{n}c_{k}e^{ikx}=\sum _{k=-n}^{n}[{\frac {1}{2\pi }}\int _{-\pi }^{\pi }f(t)e^{-ikt}dt]e^{ikx}={\frac {1}{2\pi }}\int _{-\pi }^{\pi }f(t)\sum _{k=-n}^{n}e^{ik(x-t)}\,dt={\frac {1}{2\pi }}\int _{-\pi }^{\pi }f(t)\,D_{n}(x-t)\,dt.}
Using a change of variables we get

s n ( f , x ) = 1 2 π π π f ( x t ) D n ( t ) d t . {\displaystyle s_{n}(f,x)={\frac {1}{2\pi }}\int _{-\pi }^{\pi }f(x-t)\,D_{n}(t)\,dt.}

This completes the proof of Lemma 1.

We next prove the following lemma:

Lemma 2 — The nth Cesaro sum σ n ( f , x ) {\displaystyle \sigma _{n}(f,x)} may be written using the Fejér Kernel as: σ n ( f , x ) = 1 2 π π π f ( x t ) F n ( t ) d t {\displaystyle \sigma _{n}(f,x)={\frac {1}{2\pi }}\int _{-\pi }^{\pi }f(x-t)F_{n}(t)dt}

Proof: Recall the definition of the Fejér Kernel F n ( x ) {\displaystyle F_{n}(x)}

F n ( x ) = 1 n k = 0 n 1 D k ( x ) {\displaystyle F_{n}(x)={\frac {1}{n}}\sum _{k=0}^{n-1}D_{k}(x)}
As in the case of Lemma 1, we substitute the integral form of the Fourier coefficients into the formula for σ n ( f , x ) {\displaystyle \sigma _{n}(f,x)}

σ n ( f , x ) = 1 n k = 0 n 1 s k ( f , x ) = 1 n k = 0 n 1 1 2 π π π f ( x t ) D k ( t ) d t = 1 2 π π π f ( x t ) [ 1 n k = 0 n 1 D k ( t ) ] d t = 1 2 π π π f ( x t ) F n ( t ) d t {\displaystyle \sigma _{n}(f,x)={\frac {1}{n}}\sum _{k=0}^{n-1}s_{k}(f,x)={\frac {1}{n}}\sum _{k=0}^{n-1}{\frac {1}{2\pi }}\int _{-\pi }^{\pi }f(x-t)\,D_{k}(t)\,dt={\frac {1}{2\pi }}\int _{-\pi }^{\pi }f(x-t)\,[{\frac {1}{n}}\sum _{k=0}^{n-1}D_{k}(t)]\,dt={\frac {1}{2\pi }}\int _{-\pi }^{\pi }f(x-t)\,F_{n}(t)\,dt}
This completes the proof of Lemma 2.

We next prove the 3rd Lemma:

Lemma 3 — The Fejer Kernel has the following 3 properties:

  • a) 1 2 π π π F n ( x ) d x = 1 {\displaystyle {\frac {1}{2\pi }}\int _{-\pi }^{\pi }F_{n}(x)\,dx=1}
  • b) F n ( x ) 0 {\displaystyle F_{n}(x)\geq 0}
  • c) For all fixed δ > 0 {\displaystyle \delta >0} , lim n δ | x | π F n ( x ) d x = 0 {\displaystyle \lim _{n\to \infty }\int _{\delta \leq |x|\leq \pi }F_{n}(x)\,dx=0}

This completes the proof of Lemma 3.

We are now ready to prove Fejér's Theorem. First, let us recall the statement we are trying to prove

ϵ > 0 n 0 N : n n 0 | f ( x ) σ n ( f , x ) | < ϵ , x R {\displaystyle \forall \epsilon >0\,\exists \,n_{0}\in \mathbb {N} :n\geq n_{0}\implies |f(x)-\sigma _{n}(f,x)|<\epsilon ,\,\forall x\in \mathbb {R} }

We want to find an expression for | σ n ( f , x ) f ( x ) | {\displaystyle |\sigma _{n}(f,x)-f(x)|} . We begin by invoking Lemma 2:

σ n ( f , x ) = 1 2 π π π f ( x t ) F n ( t ) d t . {\displaystyle \sigma _{n}(f,x)={\frac {1}{2\pi }}\int _{-\pi }^{\pi }f(x-t)\,F_{n}(t)\,dt.}
By Lemma 3a we know that

σ n ( f , x ) f ( x ) = 1 2 π π π f ( x t ) F n ( t ) d t f ( x ) = 1 2 π π π f ( x t ) F n ( t ) d t f ( x ) 1 2 π π π F n ( t ) d t = 1 2 π π π f ( x ) F n ( t ) d t = 1 2 π π π [ f ( x t ) f ( x ) ] F n ( t ) d t . {\displaystyle \sigma _{n}(f,x)-f(x)={\frac {1}{2\pi }}\int _{-\pi }^{\pi }f(x-t)\,F_{n}(t)\,dt-f(x)={\frac {1}{2\pi }}\int _{-\pi }^{\pi }f(x-t)\,F_{n}(t)\,dt-f(x){\frac {1}{2\pi }}\int _{-\pi }^{\pi }F_{n}(t)\,dt={\frac {1}{2\pi }}\int _{-\pi }^{\pi }f(x)\,F_{n}(t)\,dt={\frac {1}{2\pi }}\int _{-\pi }^{\pi }[f(x-t)-f(x)]\,F_{n}(t)\,dt.}

Applying the triangle inequality yields

| σ n ( f , x ) f ( x ) | = | 1 2 π π π [ f ( x t ) f ( x ) ] F n ( t ) d t | 1 2 π π π | [ f ( x t ) f ( x ) ] F n ( t ) | d t = 1 2 π π π | f ( x t ) f ( x ) | | F n ( t ) | d t , {\displaystyle |\sigma _{n}(f,x)-f(x)|=|{\frac {1}{2\pi }}\int _{-\pi }^{\pi }[f(x-t)-f(x)]\,F_{n}(t)\,dt|\leq {\frac {1}{2\pi }}\int _{-\pi }^{\pi }|[f(x-t)-f(x)]\,F_{n}(t)|\,dt={\frac {1}{2\pi }}\int _{-\pi }^{\pi }|f(x-t)-f(x)|\,|F_{n}(t)|\,dt,}
and by Lemma 3b, we get

| σ n ( f , x ) f ( x ) | = 1 2 π π π | f ( x t ) f ( x ) | F n ( t ) d t . {\displaystyle |\sigma _{n}(f,x)-f(x)|={\frac {1}{2\pi }}\int _{-\pi }^{\pi }|f(x-t)-f(x)|\,F_{n}(t)\,dt.}
We now split the integral into two parts, integrating over the two regions | t | δ {\displaystyle |t|\leq \delta } and δ | t | π {\displaystyle \delta \leq |t|\leq \pi } .

| σ n ( f , x ) f ( x ) | = ( 1 2 π | t | δ | f ( x t ) f ( x ) | F n ( t ) d t ) + ( 1 2 π δ | t | π | f ( x t ) f ( x ) | F n ( t ) d t ) {\displaystyle |\sigma _{n}(f,x)-f(x)|=\left({\frac {1}{2\pi }}\int _{|t|\leq \delta }|f(x-t)-f(x)|\,F_{n}(t)\,dt\right)+\left({\frac {1}{2\pi }}\int _{\delta \leq |t|\leq \pi }|f(x-t)-f(x)|\,F_{n}(t)\,dt\right)}
The motivation for doing so is that we want to prove that lim n | σ n ( f , x ) f ( x ) | = 0 {\displaystyle \lim _{n\to \infty }|\sigma _{n}(f,x)-f(x)|=0} . We can do this by proving that each integral above, integral 1 and integral 2, goes to zero. This is precisely what we'll do in the next step.

We first note that the function f is continuous on [-π,π]. We invoke the theorem that every periodic function on [-π,π] that is continuous is also bounded and uniformily continuous. This means that ϵ > 0 , δ > 0 : | x y | δ | f ( x ) f ( y ) | ϵ {\displaystyle \forall \epsilon >0,\exists \delta >0:|x-y|\leq \delta \implies |f(x)-f(y)|\leq \epsilon } . Hence we can rewrite the integral 1 as follows

1 2 π | t | δ | f ( x t ) f ( x ) | F n ( t ) d t 1 2 π | t | δ ϵ F n ( t ) d t = 1 2 π ϵ | t | δ F n ( t ) d t {\displaystyle {\frac {1}{2\pi }}\int _{|t|\leq \delta }|f(x-t)-f(x)|\,F_{n}(t)\,dt\leq {\frac {1}{2\pi }}\int _{|t|\leq \delta }\epsilon \,F_{n}(t)\,dt={\frac {1}{2\pi }}\epsilon \int _{|t|\leq \delta }\,F_{n}(t)\,dt}
Because F n ( x ) 0 , x R {\displaystyle F_{n}(x)\geq 0,\forall x\in \mathbb {R} } and δ π {\displaystyle \delta \leq \pi }
1 2 π ϵ | t | δ F n ( t ) d t 1 2 π ϵ π π F n ( t ) d t {\displaystyle {\frac {1}{2\pi }}\epsilon \int _{|t|\leq \delta }\,F_{n}(t)\,dt\leq {\frac {1}{2\pi }}\epsilon \int _{-\pi }^{\pi }\,F_{n}(t)\,dt}
By Lemma 3a we then get for all n

1 2 π ϵ π π F n ( t ) d t = ϵ {\displaystyle {\frac {1}{2\pi }}\epsilon \int _{-\pi }^{\pi }\,F_{n}(t)\,dt=\epsilon }
This gives the desired bound for integral 1 which we can exploit in final step.

For integral 2, we note that since f is bounded, we can write this bound as M = sup π t π | f ( t ) | {\displaystyle M=\sup _{-\pi \leq t\leq \pi }|f(t)|}

1 2 π δ | t | π | f ( x t ) f ( x ) | F n ( t ) d t 1 2 π δ | t | π 2 M F n ( t ) d t = M π δ | t | π F n ( t ) d t {\displaystyle {\frac {1}{2\pi }}\int _{\delta \leq |t|\leq \pi }|f(x-t)-f(x)|\,F_{n}(t)\,dt\leq {\frac {1}{2\pi }}\int _{\delta \leq |t|\leq \pi }2M\,F_{n}(t)\,dt={\frac {M}{\pi }}\int _{\delta \leq |t|\leq \pi }F_{n}(t)\,dt}
We are now ready to prove that lim n | σ n ( f , x ) f ( x ) | = 0 {\displaystyle \lim _{n\to \infty }|\sigma _{n}(f,x)-f(x)|=0} . We begin by writing

| σ n ( f , x ) f ( x ) | ϵ + M π δ | t | π F n ( t ) d t {\displaystyle |\sigma _{n}(f,x)-f(x)|\leq \epsilon \,+{\frac {M}{\pi }}\int _{\delta \leq |t|\leq \pi }F_{n}(t)\,dt}
Thus,
lim n | σ n ( f , x ) f ( x ) | lim n ϵ + lim n M π δ | t | π F n ( t ) d t {\displaystyle \lim _{n\to \infty }|\sigma _{n}(f,x)-f(x)|\leq \lim _{n\to \infty }\epsilon \,+\lim _{n\to \infty }{\frac {M}{\pi }}\int _{\delta \leq |t|\leq \pi }F_{n}(t)\,dt}
By Lemma 3c we know that the integral goes to 0 as n goes to infinity, and because epsilon is arbitrary, we can set it equal to 0. Hence lim n | σ n ( f , x ) f ( x ) | = 0 {\displaystyle \lim _{n\to \infty }|\sigma _{n}(f,x)-f(x)|=0} , which completes the proof.

Modifications and Generalisations of Fejér's Theorem

In fact, Fejér's theorem can be modified to hold for pointwise convergence.[3]

Modified Fejér's Theorem — Let f L 2 ( π , π ) {\displaystyle f\in L^{2}(-\pi ,\pi )} be continuous at x ( π , π ) {\displaystyle x\in (-\pi ,\pi )} , then σ n ( f , x ) {\displaystyle \sigma _{n}(f,x)} converges pointwise as n goes to infinity.

Sadly however, the theorem does not work in a general sense when we replace the sequence σ n ( f , x ) {\displaystyle \sigma _{n}(f,x)} with s n ( f , x ) {\displaystyle s_{n}(f,x)} . This is because there exist functions whose Fourier series fails to converge at some point.[4] However, the set of points at which a function in L 2 ( π , π ) {\displaystyle L^{2}(-\pi ,\pi )} diverges has to be measure zero. This fact, called Lusins conjecture or Carleson's theorem, was proven in 1966 by L. Carleson.[4] We can however prove a corrollary relating which goes as follows:

Corollary — Let s n C , n Z + {\displaystyle s_{n}\in \mathbb {C} ,\,\forall n\in \,\mathbb {Z} _{+}} . If s n {\displaystyle s_{n}} converges to s as n goes to infinity, then σ n {\displaystyle \sigma _{n}} converges to s as n goes to infinity.

A more general form of the theorem applies to functions which are not necessarily continuous (Zygmund 1968, Theorem III.3.4). Suppose that f is in L1(-π,π). If the left and right limits f(x0±0) of f(x) exist at x0, or if both limits are infinite of the same sign, then

σ n ( x 0 ) 1 2 ( f ( x 0 + 0 ) + f ( x 0 0 ) ) . {\displaystyle \sigma _{n}(x_{0})\to {\frac {1}{2}}\left(f(x_{0}+0)+f(x_{0}-0)\right).}

Existence or divergence to infinity of the Cesàro mean is also implied. By a theorem of Marcel Riesz, Fejér's theorem holds precisely as stated if the (C, 1) mean σn is replaced with (C, α) mean of the Fourier series (Zygmund 1968, Theorem III.5.1).

References

  1. ^ Lipót Fejér, « Sur les fonctions intégrables et bornées », C.R. Acad. Sci. Paris, 10 décembre 1900, 984-987, .
  2. ^ Leopold Fejér, Untersuchungen über Fouriersche Reihen, Mathematische Annalen, vol. 58, 1904, 51-69.
  3. ^ a b "Introduction", An Introduction to Hilbert Space, Cambridge University Press, pp. 1–3, 1988-07-21, retrieved 2022-11-14
  4. ^ a b Rogosinski, W. W.; Rogosinski, H. P. (December 1965). "An elementary companion to a theorem of J. Mercer". Journal d'Analyse Mathématique. 14 (1): 311–322. doi:10.1007/bf02806398. ISSN 0021-7670.
  • Zygmund, Antoni (1968), Trigonometric Series (2nd ed.), Cambridge University Press (published 1988), ISBN 978-0-521-35885-9.