Malliavin derivative

In mathematics, the Malliavin derivative is a notion of derivative in the Malliavin calculus. Intuitively, it is the notion of derivative appropriate to paths in classical Wiener space, which are "usually" not differentiable in the usual sense. [citation needed]

Definition

Let H {\displaystyle H} be the Cameron–Martin space, and C 0 {\displaystyle C_{0}} denote classical Wiener space:

H := { f W 1 , 2 ( [ 0 , T ] ; R n ) | f ( 0 ) = 0 } := { paths starting at 0 with first derivative in  L 2 } {\displaystyle H:=\{f\in W^{1,2}([0,T];\mathbb {R} ^{n})\;|\;f(0)=0\}:=\{{\text{paths starting at 0 with first derivative in }}L^{2}\}} ;
C 0 := C 0 ( [ 0 , T ] ; R n ) := { continuous paths starting at 0 } ; {\displaystyle C_{0}:=C_{0}([0,T];\mathbb {R} ^{n}):=\{{\text{continuous paths starting at 0}}\};}

By the Sobolev embedding theorem, H C 0 {\displaystyle H\subset C_{0}} . Let

i : H C 0 {\displaystyle i:H\to C_{0}}

denote the inclusion map.

Suppose that F : C 0 R {\displaystyle F:C_{0}\to \mathbb {R} } is Fréchet differentiable. Then the Fréchet derivative is a map

D F : C 0 L i n ( C 0 ; R ) ; {\displaystyle \mathrm {D} F:C_{0}\to \mathrm {Lin} (C_{0};\mathbb {R} );}

i.e., for paths σ C 0 {\displaystyle \sigma \in C_{0}} , D F ( σ ) {\displaystyle \mathrm {D} F(\sigma )\;} is an element of C 0 {\displaystyle C_{0}^{*}} , the dual space to C 0 {\displaystyle C_{0}\;} . Denote by D H F ( σ ) {\displaystyle \mathrm {D} _{H}F(\sigma )\;} the continuous linear map H R {\displaystyle H\to \mathbb {R} } defined by

D H F ( σ ) := D F ( σ ) i : H R , {\displaystyle \mathrm {D} _{H}F(\sigma ):=\mathrm {D} F(\sigma )\circ i:H\to \mathbb {R} ,}

sometimes known as the H-derivative. Now define H F : C 0 H {\displaystyle \nabla _{H}F:C_{0}\to H} to be the adjoint of D H F {\displaystyle \mathrm {D} _{H}F\;} in the sense that

0 T ( t H F ( σ ) ) t h := H F ( σ ) , h H = ( D H F ) ( σ ) ( h ) = lim t 0 F ( σ + t i ( h ) ) F ( σ ) t . {\displaystyle \int _{0}^{T}\left(\partial _{t}\nabla _{H}F(\sigma )\right)\cdot \partial _{t}h:=\langle \nabla _{H}F(\sigma ),h\rangle _{H}=\left(\mathrm {D} _{H}F\right)(\sigma )(h)=\lim _{t\to 0}{\frac {F(\sigma +ti(h))-F(\sigma )}{t}}.}

Then the Malliavin derivative D t {\displaystyle \mathrm {D} _{t}} is defined by

( D t F ) ( σ ) := t ( ( H F ) ( σ ) ) . {\displaystyle \left(\mathrm {D} _{t}F\right)(\sigma ):={\frac {\partial }{\partial t}}\left(\left(\nabla _{H}F\right)(\sigma )\right).}

The domain of D t {\displaystyle \mathrm {D} _{t}} is the set F {\displaystyle \mathbf {F} } of all Fréchet differentiable real-valued functions on C 0 {\displaystyle C_{0}\;} ; the codomain is L 2 ( [ 0 , T ] ; R n ) {\displaystyle L^{2}([0,T];\mathbb {R} ^{n})} .

The Skorokhod integral δ {\displaystyle \delta \;} is defined to be the adjoint of the Malliavin derivative:

δ := ( D t ) : image ( D t ) L 2 ( [ 0 , T ] ; R n ) F = L i n ( F ; R ) . {\displaystyle \delta :=\left(\mathrm {D} _{t}\right)^{*}:\operatorname {image} \left(\mathrm {D} _{t}\right)\subseteq L^{2}([0,T];\mathbb {R} ^{n})\to \mathbf {F} ^{*}=\mathrm {Lin} (\mathbf {F} ;\mathbb {R} ).}

See also

  • H-derivative

References