Virtual machining

(Learn how and when to remove this message)

Virtual machining is the practice of using computers to simulate and model the use of machine tools for part manufacturing. Such activity replicates the behavior and errors of a real environment in virtual reality systems.[1] This can provide useful ways to manufacture products without physical testing on the shop floor. As a result, time and cost of part production can be decreased.[2]

Applications

Virtual machining provides various benefits:

Future research works

Some suggestions for the future studies in virtual machining systems are presented as:

References

  1. ^ Soori, Mohsen; Arezoo, Behrooz; Habibi, Mohsen (2013). "Dimensional and geometrical errors of three-axis CNC milling machines in a virtual machining system". Computer-Aided Design. 45 (11): 1306–1313. doi:10.1016/j.cad.2013.06.002. S2CID 9020879.
  2. ^ a b c Soori, Mohsen; Arezoo, Behrooz; Habibi, Mohsen (2014). "Virtual machining considering dimensional, geometrical and tool deflection errors in three-axis CNC milling machines". Journal of Manufacturing Systems. 33 (4): 498–507. doi:10.1016/j.jmsy.2014.04.007. S2CID 110714535.
  3. ^ Altintas, Y.; Brecher, C.; Weck, M.; Witt, S. (2005). "Virtual Machine Tool". Cirp Annals. 54 (2): 115–138. doi:10.1016/S0007-8506(07)60022-5.
  4. ^ Cheung, C.F.; Lee, W.B. (2001). "A framework of a virtual machining and inspection system for diamond turning of precision optics". Journal of Materials Processing Technology. 119 (1–3): 27–40. doi:10.1016/S0924-0136(01)00893-7. hdl:10397/11079.
  5. ^ Ong, T.S.; Hinds, B.K. (2003). "The application of tool deflection knowledge in process planning to meet geometric tolerances". International Journal of Machine Tools and Manufacture. 43 (7): 731–737. doi:10.1016/S0890-6955(03)00027-0.
  6. ^ Narita, Hirohisa; Shirase, Keiichi; Wakamatsu, Hidefumi; Arai, Eiji (2000). "Pre-Process Evaluation of End Milling Operation Using Virtual Machining Simulator". JSME International Journal Series C. 43 (2): 492–497. Bibcode:2000JSMEC..43..492N. doi:10.1299/jsmec.43.492.
  7. ^ Soori, Mohsen; Arezoo, Behrooz; Habibi, Mohsen (2016). "Tool Deflection Error of Three-Axis Computer Numerical Control Milling Machines, Monitoring and Minimizing by a Virtual Machining System". Journal of Manufacturing Science and Engineering. 138 (8): 081005. doi:10.1115/1.4032393. S2CID 112030353.
  8. ^ Tani, Giovanni; Bedini, Raffaele; Fortunato, Alessandro; Mantega, Claudio (2007). "Dynamic Hybrid Modeling of the Vertical Z Axis in a High-Speed Machining Center: Towards Virtual Machining". Journal of Manufacturing Science and Engineering. 129 (4): 780. doi:10.1115/1.2738097.
  9. ^ Soori, Mohsen; Arezoo, Behrooz; Habibi, Mohsen (2017). "Accuracy analysis of tool deflection error modelling in prediction of milled surfaces by a virtual machining system". International Journal of Computer Applications in Technology. 55 (4): 308. doi:10.1504/IJCAT.2017.086015.
  10. ^ Ratchev, S.; Liu, S.; Becker, A.A. (2005). "Error compensation strategy in milling flexible thin-wall parts". Journal of Materials Processing Technology. 162–163: 673–681. doi:10.1016/j.jmatprotec.2005.02.192.
  11. ^ Li, Hongqi; Shin, Yung C. (2009). "Integration of thermo-dynamic spindle and machining simulation models for a digital machining system". The International Journal of Advanced Manufacturing Technology. 40 (7–8): 648–661. doi:10.1007/s00170-008-1394-8. S2CID 109726121.
  12. ^ Fletcher, Craig; Ritchie, James; Lim, Theo; Sung, Raymond (2013). "The development of an integrated haptic VR machining environment for the automatic generation of process plans". Computers in Industry. 64 (8): 1045–1060. doi:10.1016/j.compind.2013.07.005.
  13. ^ Erkorkmaz, Kaan; Yeung, Chi-Ho; Altintas, Yusuf (2006). "Virtual CNC system. Part II. High speed contouring application". International Journal of Machine Tools and Manufacture. 46 (10): 1124–1138. doi:10.1016/j.ijmachtools.2005.08.001.
  14. ^ a b Merdol, S. Doruk; Altintas, Yusuf (2008). "Virtual cutting and optimization of three-axis milling processes". International Journal of Machine Tools and Manufacture. 48 (10): 1063–1071. doi:10.1016/j.ijmachtools.2008.03.004.
  15. ^ Palanisamy, P.; Rajendran, I.; Shanmugasundaram, S. (2007). "Optimization of machining parameters using genetic algorithm and experimental validation for end-milling operations". The International Journal of Advanced Manufacturing Technology. 32 (7–8): 644–655. doi:10.1007/s00170-005-0384-3. S2CID 109844944.
  16. ^ Abdul Kadir, Aini; Xu, Xun; Hämmerle, Enrico (2011). "Virtual machine tools and virtual machining—A technological review". Robotics and Computer-Integrated Manufacturing. 27 (3): 494–508. doi:10.1016/j.rcim.2010.10.003.
  17. ^ Altintas, Y.; Kersting, P.; Biermann, D.; Budak, E.; Denkena, B.; Lazoglu, I. (2014). "Virtual process systems for part machining operations". Cirp Annals. 63 (2): 585–605. doi:10.1016/j.cirp.2014.05.007.
  18. ^ "MACHpro: THE VIRTUAL MACHINING SYSTEM". malinc.com. Manufacturing Automation Laboratories. Retrieved 17 November 2016.
  19. ^ Abukhshim, N.A.; Mativenga, P.T.; Sheikh, M.A. (2006). "Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining". International Journal of Machine Tools and Manufacture. 46 (7–8): 782–800. doi:10.1016/j.ijmachtools.2005.07.024.
  20. ^ Karabagli, Bilal; Simon, Thierry; Orteu, Jean-José (2016). "A new chain-processing-based computer vision system for automatic checking of machining set-up application for machine tools safety" (PDF). The International Journal of Advanced Manufacturing Technology. 82 (9–12): 1547–1568. doi:10.1007/s00170-015-7438-y. S2CID 253688701.
  21. ^ Altintas, Yusuf (2016). "Virtual High Performance Machining". Procedia Cirp. 46: 372–378. doi:10.1016/j.procir.2016.04.154.
  22. ^ Zhang, J.; Ong, S.K.; Nee, A.Y.C. (2012). "Design and Development of an in situ Machining Simulation System Using Augmented Reality Technology". Procedia Cirp. 3: 185–190. doi:10.1016/j.procir.2012.07.033.
  23. ^ Pelliccia, Luigi; Klimant, Philipp; Schumann, Marco; Pürzel, Franziska; Wittstock, Volker; Putz, Matthias (2016). "Energy Visualization Techniques for Machine Tools in Virtual Reality". Procedia Cirp. 41: 329–333. doi:10.1016/j.procir.2015.10.013.

External links

  • v
  • t
  • e
Comparison of platform virtualization software
Hardware
(hypervisors)
Native
Hosted
Specialized
Independent
Tools
Operating
system
OS containers
Application containers
Virtual kernel architectures
Related kernel features
Orchestration
Desktop
Application
Network
See also
See also: List of emulators, List of computer system emulators