Persamaan Pauli

Bagian dari seri artikel mengenai
Mekanika kuantum
H ^ | ψ ( t ) = i t | ψ ( t ) {\displaystyle {\hat {H}}|\psi (t)\rangle =i\hbar {\frac {\partial }{\partial t}}|\psi (t)\rangle }
  • Pengantar
  • Glosarium
  • Sejarah
  • Buku teks
Latar belakang
  • Mekanika klasik
  • Teori kuantum lama
  • Notasi Bra–ket
  • Hamiltonian
  • Interferensi
Dasar-dasar
  • Bilangan kuantum
  • Dekoherensi
  • Fluktuasi kuantum
  • Fungsi gelombang
    • Keruntuhan fungsi gelombang
    • Dualitas gelombang-partikel
    • Gelombang materi
  • Hamiltonian
  • Interferensi
  • Keadaan dasar
  • Keadaan kuantum
  • Keterkaitan
  • Koherensi
  • Komplementaritas
  • Kuantum
  • Nonlokalitas
  • Operator
  • Pengukuran
  • Prinsip ketidakpastian
  • Qubit
  • Simetri
  • Spin
  • Superposisi
  • Teleportasi kuantum
  • Tingkat energi
Efek
Eksperimen
  • Penghapus kuantum (pilihan tertunda)
Formulasi
  • Garis besar
Persamaan
Interpretasi
  • Garis besar
  • Ansambel
  • Banyak-dunia
  • Bayesian
  • de Broglie–Bohm
  • Keruntuhan objektif
  • Kopenhagen
  • Logika kuantum
  • Relasional
  • Sejarah konsisten
  • Stokastik
  • Transaksional
  • Variabel tersembunyi
Topik lanjutan
Kategori
Mekanika kuantum
  • l
  • b
  • s

Dalam mekanika kuantum, persamaan Pauli atau persamaan Schrödinger–Pauli adalah formulasi persamaan Schrödinger untuk partikel spin-½, yang memperhitungkan interaksi partikel spin dengan medan elektromagnetik eksternal. Persamaan ini adalah batas non-relativistik dari persamaan Dirac dan dapat digunakan pada partikel yang bergerak dengan kecepatan jauh lebih kecil dari kecepatan cahaya, sehingga efek relativistik dapat diabaikan. Persamaan ini diformulasikan oleh Wolfgang Pauli pada tahun 1927.[1]

Persamaan

Untuk sebuah partikel dengan massa m dan muatan q, dalam medan elektromagnetik yang dideskripsikan dengan potensial vektor A = (Ax, Ay, Az) dan potensial elektrik skalar ϕ, persamaan Paulinya adalah:

Persamaan Pauli (umum)

[ 1 2 m ( σ ( p q A ) ) 2 + q ϕ ] | ψ = i t | ψ {\displaystyle \left[{\frac {1}{2m}}({\boldsymbol {\sigma }}\cdot (\mathbf {p} -q\mathbf {A} ))^{2}+q\phi \right]|\psi \rangle =i\hbar {\frac {\partial }{\partial t}}|\psi \rangle }

dimana σ = (σx, σy, σz) adalah matriks Pauli yang dikumpulkan ke dalam vektor untuk memudahkan, p = −∇ adalah operator momentum dimana ∇ menunjukkan gradien operator, dan

| ψ = ( ψ + ψ ) {\displaystyle |\psi \rangle ={\begin{pmatrix}\psi _{+}\\\psi _{-}\end{pmatrix}}}

adalah dua komponen spinor fungsi gelombang, sebuah vektor kolom yang ditulis dalam notasi Dirac.

operator Hamiltonian

H ^ = 1 2 m ( σ ( p q A ) ) 2 + q ϕ {\displaystyle {\hat {H}}={\frac {1}{2m}}({\boldsymbol {\sigma }}\cdot (\mathbf {p} -q\mathbf {A} ))^{2}+q\phi }

adalah operator matriks 2x2, karena matriks Pauli. Subtitusi ke persamaan Schrödinger akan menghasilkan persamaan Pauli. Hamiltonian ini mirip dengan Hamiltonian klasik untuk partikel bermuatan yang berinteraksi dengan medan elektromagnetik, lihat gaya Lorentz untuk rincian kasus klasik ini. Istilah energi kinetik untuk partikel bebas dalam ketiadaan medan magnetik adalah p2/2m dimana p adalah momentum kinetik, ketika terdapat medan elektromagnetik kita akan mempunyai kopling minimal p = P − qA, dimana P adalah momentum kanonikal.

Lihat pula

  • Fisika semi klasik
  • Fisika atomik, molekular, dan optikal
  • Kontraksi grup

Referensi

  1. ^ Wolfgang Pauli (1927) Zur Quantenmechanik des magnetischen Elektrons Zeitschrift für Physik (43) 601-623
  • Schwabl, Franz (2004). Quantenmechanik I. Springer. ISBN 978-3540431060. 
  • Schwabl, Franz (2005). Quantenmechanik für Fortgeschrittene. Springer. ISBN 978-3540259046. 
  • Claude Cohen-Tannoudji; Bernard Diu; Frank Laloe (2006). Quantum Mechanics 2. Wiley, J. ISBN 978-0471569527. 
Wikimedia Commons memiliki media mengenai Quantum mechanics.


Ikon rintisan

Artikel bertopik fisika ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.

  • l
  • b
  • s