Paradoxos de Zenão

Os paradoxos de Zenão, atribuídos ao filósofo pré-socrático Zenão de Eleia, são argumentos utilizados para provar a inconsistência dos conceitos de multiplicidade, divisibilidade e movimento. Através de um método dialético que antecipou Sócrates, Zenão procurava, partindo das premissas de seus oponentes, reduzi-las ao absurdo. Com isso, ele sustentava o ponto de fé dos eleáticos e de seu mestre Parmênides, que ia contra as idéias pitagóricas. Como em outros pré-socráticos, não possuímos na atualidade nenhuma obra completa de Zenão, sendo as fontes principais para os seus paradoxos as citações na obra de Aristóteles e do comentador aristotélico Simplício.

Argumentos contra o movimento

Aristóteles escreve na Física[1], 239b9 (DK29A25) que Zenão enunciou quatro argumentos contra o movimento, conhecidos como os paradoxos do estádio, de Aquiles e a tartaruga, da flecha voando e das filas em movimento[2].

Dicotomia

Imagine um atleta querendo correr uma distância de 60 m. Para chegar no final do percurso, ele primeiro terá que passar no ponto que corresponde a 1/2 (metade) do percurso, depois no próximo ponto que corresponde a 2/3 do percurso, depois 3/4 do percurso, para assim chegar a 4/5 do percurso e depois 5/6 do percurso e depois 30/31 do percurso ao ponto correspondente a 199/200 e depois ao ponto 5647/5648 do percurso (que numericamente corresponderia a 59,9893798 m), tendendo assim a ser um número infinito de pontos antes que o corredor chegue ao final.

Como o infinito é uma abstração matemática que significa algo que não tem limite, o atleta jamais conseguiria chegar ao final do percurso (60 m), pois ele teria que percorrer infinitos pontos para chegar a um final. Se ele chegasse ao fim depois de percorrer o infinito, significaria que este infinito tem um fim; como isto não é possível, gera assim o paradoxo.

"O problema por trás da Dicotomia, que é o mesmo que o do Aquiles, parece repousar na intuição de que o corredor demora um tempo finito mínimo para percorrer cada intervalo espacial sucessivo. Como há infinitos desses intervalos, o tempo de transcurso seria infinito. Sabemos, porém, que essa intuição é errónea: o tempo de percurso por cada intervalo é proporcional ao comprimento do intervalo (supondo velocidade constante). Esse ponto foi apontado por Aristóteles (Física VI, 233a25), mas em outro trecho ele se confundiu em relação à presença de infinitos intervalos finitos de tempo (Física VIII, 263a15). Da mesma maneira que os intervalos espaciais somam 1 na série convergente, os intervalos temporais também o fazem. O corredor acaba completando o percurso!"[3]

Aquiles e a tartaruga

É contado sob a forma de uma corrida entre Aquiles e uma tartaruga[4]. Aquiles, herói grego, e a tartaruga decidem apostar uma corrida. Como a velocidade de Aquiles é maior que a da tartaruga, esta recebe uma vantagem, começando a corrida um trecho na frente da linha de largada de Aquiles. Aquiles nunca sobrepassa à tartaruga, pois quando ele chegar à posição inicial A da tartaruga, esta encontra-se mais a frente, numa outra posição B. Quando Aquiles chegar a B, a tartaruga não está mais lá, pois avançou para uma nova posição C e assim sucessivamente, ad infinitum.

Em termos matemáticos, seria dizer que o limite, com o espaço entre a tartaruga e Aquiles tendendo a 0, do espaço de Aquiles, é a tartaruga. Ou seja, ele virtualmente alcança a tartaruga, mas nessa linha de raciocínio, não importa quanto tempo se passe, Aquiles nunca alcançará a tartaruga nem, portanto, poderá ultrapassá-la.

Esse paradoxo vale-se fortemente do conceito de referencial. Dada uma corrida somente de Aquiles, sem estar contra ninguém, o seu movimento é ilimitado. Ao se colocar, porém, a tartaruga, cria-se um referencial para o movimento de Aquiles, que é o que causa o paradoxo. De fato, o movimento dele é independente do movimento da tartaruga; se adotamos a tartaruga como um padrão para determinar o movimento dele, criamos uma situação artificial em que Aquiles é regido pelo espaço da tartaruga. É uma visão do problema que pode remeter à mecânica quântica e ao princípio da Incerteza formulado por Werner Heisenberg em 1927. Esse princípio rege que, quão maior a certeza da localização de uma partícula, menor a certeza de seu momento, e isso é implicado pela existência de um observador no sistema físico. Analogamente, o paradoxo de Aquiles e da tartaruga tem sua interpretação mudada conforme a existência ou não da última, gerando o denominado Paradoxo quântico de Zenão[5], que em determinadas condições relacionadas à medição, Aquiles nunca alcançaria a tartaruga.

Incoerências do paradoxo

Ao se afirmar que, por tal argumento explícito acima, Aquiles nunca alcançará a tartaruga, Zenão desconsidera qualquer reflexão sobre o que é o tempo. A conclusão de que a tartaruga sempre estará à frente se sustenta sobre o argumento de infinitos deslocamentos simultâneos, de Aquiles e da tartaruga, mas que representam sempre um décimo em relação ao deslocamento anterior. Analogamente, o tempo transcorrido para cada deslocamento irá ser de um décimo do tempo do deslocamento anterior. Logo, o tempo transcorrido é uma progressão geométrica de razão inferior a "um", o que significa que somando-se os infinitos intervalos de tempo dessa progressão, haverá um valor limite ao qual o somatório converge. Encontra-se, então, uma incoerência no paradoxo, porque ele define que a tartaruga nunca será alcançada, mas a análise temporal demonstra que isto acontecerá apenas neste intervalo de tempo fixo.

Supondo agora uma extensão da mecânica quântica (ainda em discussão na comunidade científica) na qual o tempo pode ser caracterizado por unidades mínimas indivisíveis, o paradoxo perde sua lógica à medida que os intervalos de tempo se aproximam da unidade fundamental, na qual o valor absoluto da velocidade de Aquiles é superior à da tartaruga, e consequentemente haverá a ultrapassagem, tornando Aquiles o vencedor da corrida.

Finito X infinito

A solução clássica para esse paradoxo envolve a utilização do conceito de limite e convergência de séries numéricas. O paradoxo surge ao supor intuitivamente que a soma de infinitos intervalos de tempo é infinita, de tal forma que seria necessário passar um tempo infinito para Aquiles alcançar a tartaruga. No entanto, os infinitos intervalos de tempo descritos no paradoxo formam uma progressão geométrica e a sua soma converge para um valor finito, em que Aquiles encontra a tartaruga.

Outra solução: esse é um raciocínio infinitesimal, em que cada objeto move-se infinitamente por distâncias que vão reduzindo-se infinitamente a cada etapa, o que só seria possível se as dimensões de cada objeto pudessem ser abstraídas, como se fossem pontos materiais, o que não ocorre, no mundo físico, pois as leis da mecânica clássica (de Newton) não se aplicam em espaços que tendem ao comprimento de Planck.

Ver também

Referências

  1. Aristotle's Physics, a Revised Text with Introduction and Commentary by W.D.Ross, Clarendon Press: Oxford, 1936.
  2. Ver: Kirk, G.S.; Raven, J.S. (1977). The Presocratic Philosophers. Cambridge University Press. Cambridge: [s.n.] pp. 291––297  A referência emprega parâmetros obsoletos |coautores= (ajuda)
  3. PESSOA, Osvaldo. Questão: O espaço e o tempo são contínuos ou discretos? http://www.fflch.usp.br/df/opessoa/FiFi-11-Cap-1.pdf
  4. Kirk-Raven, op. cit., p. 294.
  5. Misra, B., Sudarshan, E.C.G. (1977). «The Zeno's paradox in quantum theory» (PDF). Journal of Mathematical Physics. 18 (4): 756--763  !CS1 manut: Nomes múltiplos: lista de autores (link)
Controle de autoridade
  • Portal da filosofia