アデノシン三リン酸

アデノシン三リン酸
{{{画像alt1}}}
{{{画像alt2}}}

Adenosine 5'-(tetrahydrogen triphosphate)

識別情報
CAS登録番号 56-65-5
KEGG C00002
特性
化学式 C10H16N5O13P3
モル質量 507.181 g/mol
酸解離定数 pKa 6.5
特記なき場合、データは常温 (25 °C)・常圧 (100 kPa) におけるものである。

(アデノシンさんリンさん、: adenosine triphosphate)とは、アデノシンリボースに3分子のリン酸が付き、2個の高エネルギーリン酸結合を持つヌクレオチドである。リボースの5位の炭素に、リン酸が結合しているため、アデノシン 5'-三リン酸などとも書かれる。しばしば「adenosine triphosphate」から取ったアルファベットを並べて「(エー・ティー・ピー)」と呼称される。本稿では以後、ATPと略記する。

所在

ATPは真核生物真正細菌など、既知の地球生物の全ての細胞が利用している解糖系でも産生される物質であるため、地球上の生物の体内に広く分布する。生体内では、リン酸1分子、または、リン酸2分子が離れたり結合したりする事で、エネルギーの放出・貯蔵を行う[1]。なお例えば、に限らず、真核生物が脂肪酸アミノ酸などをエネルギーとして利用する際も、例えば、一部はGTPに変換されて、そのままGTPが別の用途に用いられる場合など例外はあるものの、主にATPに変換してからエネルギーとして利用し、色々な用途に活用している。これらの理由ため、既知の地球生物の各細胞には普遍的にATPが存在する。

なお、しばしば地球生物の細胞は、ATPを経由して物質のエネルギーを利用しているため、ATPは「生体のエネルギー通貨」とも形容される。

構造とエネルギー

プリン塩基であるアデニンに、単糖のリボースがN-グリコシド結合により結合したアデノシンを基本構造として、リボースの 5'-ヒドロキシ基にリン酸エステル結合によりリン酸基が結合し、さらにリン酸が2分子連続して無水結合で結合した構造である。この、リン酸基同士の結合(リン酸無水結合)は、エネルギー的に不安定であり、このリン酸基の加水分解による切断反応や、他の分子にリン酸基を転移させる反応(切断した両リン酸基の端に、反応により新たに生成する、より安定な化学結合の生成に伴って)で、エネルギーを放出する。ATPのリン酸基の加水分解転位反応は、正味の自由エネルギーの減少を伴うエネルギー放出反応であり、あたかもATPのリン酸基同士の結合の切断が生体内の化学反応の実質的な推進力であるかのように見えるため、この意味において、この結合は「高エネルギーリン酸結合」と呼ばれており、これはリン原子が3つ繋がった状態である[2]

エネルギーの収支式を以下に示す(ΔG°’標準自由エネルギー変化))。

ATP + H2O → ADP(アデノシン二リン酸) + Pi(リン酸)

ΔG°’ = −30.5 kJ/mol (−7.3 kcal/mol)
ΔG°’ = −45.6 kJ/mol (−10.9 kcal/mol)

この標準自由エネルギー変化は、一般的なリン酸エステル化合物のリン酸エステル結合の加水分解の標準自由エネルギー変化ΔG°’ = −3〜4 kcal/mol)などに比べ非常に大きいので、このようなリン酸エステル化合物が、ATPからのリン酸基の転移により生成する反応の標準自由エネルギー変化は、全体として負の値であり、この反応はATPからリン酸エステル化合物へのリン酸転移の方向に自発的に進む。さらに細胞内では、ATP濃度はADPの10倍程高く、リン酸濃度も標準状態 (1.0 M) より、はるかに低い (1〜10 mM程度) ため、細胞内の環境ではATPの高エネルギーリン酸結合の加水分解に伴って実際に放出されるエネルギー(自由エネルギー変化 ΔG)は、より大きく、−10〜11 kcal/mol に達する。

生合成

ATPは主にATP合成酵素において酸化的リン酸化光リン酸化によって生じる。

ADP + Pi → ATP

また、解糖系クエン酸回路などでもATPは合成される。

好気呼吸によるATPの収支式については「好気呼吸」を参照

GTP(グアノシン三リン酸)については、以下の反応式でATPと相互変換する。

GTP + ADP ⇔ GDP + ATP (ΔG°’ 〜0)

また、細胞内では、アデニル酸キナーゼの働きにより、ATP, ADP, AMPが次の反応による平衡混合物として存在し、ATPはADPからも一部再生される。

2 ADP ⇔ ATP + AMP (ΔG°’ 〜0)

ATPの役割

ATPはエネルギーを要する生物体の反応素過程には必ず使用されている。例えば、哺乳類骨格筋100 gあたりに、ATPは0.4 g程度存在する。反応・役割の例については、以下の物などが挙げられる。

なお、リン酸基の付加はリン酸基転移酵素(キナーゼ)によって行われる。

用途

有効成分としてATP-2Naを配合した内服薬

ATPは、医薬品としても利用されている。日本では2011年現在、調節性眼精疲労の症状改善、消化管機能低下が起きている者の慢性胃炎の症状改善、心不全の症状改善、頭部外傷後遺症の症状改善に用いられる[3]。この他、2017年現在、日本ではATPの顆粒製剤のみは、メニエール病や内耳障害を原因とするめまいの改善にも用いられる[4]。なお、消化管機能低下が起きている者の慢性胃炎については軽症患者の自覚症状の改善に有効だったとされている[5]

歴史

  • 1929年 - Fiske、Subbarowら、そしてLoehmannによって独自に、不安定なリン酸結合を持つヌクレオチドとして発見された。当初、ATPはエネルギー通貨ではなく、リン酸供与体の一部として認識されていた。
  • 1931年 - Loehmann、Meyerhofによって解糖系にATPが用いられる事が明らかになった。
  • 1939年 - Engelhardtらによって、筋収縮のタンパク質であるミオシンが、ATPを加水分解する活性を有する事が明らかになった。同年、フリッツ・アルベルト・リップマンによってATPは代謝に中心的な役割を果たしている事が提唱された。
  • 1941年 - セント=ジェルジ・アルベルトによってミオシンが、ATPによって収縮する事が明らかになった。
  • 1942年 - セント=ジェルジによってアクチン、ミオシン、ATPが筋収縮の基本的な構成単位である事が明らかになった。

これらのハンガリー学派の筋収縮に関する一連の研究が「ATPは生体のエネルギー通貨」であるという認識を構築していった。また、ATPが能動輸送に関係することが1957年、イェンス・スコウらによって明らかにされ(Na+, K+-ATPaseの発見)、ATP利用系のフォーマットが現在に至るまで構築されている。

ATP合成系の歴史については、以下の通りである。

脚注・参考文献

  1. ^ デジタル大辞泉【アデノシン三リン酸】(アデノシンさんりんさん)
  2. ^ ただし、結合自体がエネルギーを持つわけではない:この化学結合の切断は、吸エネルギー反応である。
  3. ^ ATP腸溶錠(p.1)
  4. ^ ATP腸溶錠・ATP顆粒剤(p.11)
  5. ^ ATP腸溶錠・ATP顆粒剤(p.15)
  6. ^ Sawada, K.; Echigo, N.; Juge, N.; Miyaji, T.; Otsuka, M.; Omote, H.; Yamamoto, A.; and Yoshinori Moriyama (April 15, 2008) “Identification of a vesicular nucleotide transporter” Proceedings of the National Academy of Sciences of the United States of America, 2008 105: 5683-5686; doi:10.1073/pnas.0800141105
  7. ^ VNUTによって神経末端のシナプス小胞に運ばれたATPは貯蔵された後、外部に放出されて疼痛を発生させたり血管を収縮したりするため、VNUTが抑制できれば痛み・血管収縮を管理することが可能かもしれないと考えられている。

関連項目

ウィキメディア・コモンズには、アデノシン三リン酸に関連するカテゴリがあります。
核酸の構成要素
核酸塩基

プリン (アデニングアニン、プリン類縁体) · ピリミジン (ウラシルチミンシトシン、ピリミジン類縁体)

ヌクレオシド
リボヌクレオシド
デオキシリボヌクレオシド
ヌクレオチド
(ヌクレオシド一リン酸)
リボヌクレオチド

AMPGMP、m5UMP、UMPCMP

デオキシリボヌクレオチド

dAMPdGMPdTMPdUMPdCMP

環状ヌクレオチド

cAMPcGMP、c-di-GMP、cADPR

ヌクレオシド二リン酸

ADPGDP、m5UDP、UDPCDP  · dADPdGDPdTDP、dUDP、dCDP

ヌクレオシド三リン酸

ATP、GTP、m5UTP、UTPCTP  · dATPdGTPdTTP、dUTP、dCTP

補酵素

ビタミン: NAD+ (B3) - NADP+ (B3) - 補酵素A (B5) - THF / H4F (B9), DHF, MTHF - アスコルビン酸 (C) - メナキノン (K) - 補酵素F420
非ビタミン: ATP - CTP - SAM - PAPS - GSH - 補酵素B - 補酵素M - 補酵素Q - メタノフラン - BH4 - H4MPT

有機補欠分子族

ビタミン: TPP / ThDP (B1) - FMN, FAD (B2) - PLP / P5P (B6) - ビオチン (B7) - メチルコバラミン, コバラミン (B12)
非ビタミン: ヘム - α-リポ酸 - モリブドプテリン - PQQ

金属補欠分子族

Ca2+ - Cu2+ - Fe2+, Fe3+ - Mg2+ - Mn2+ - Mo - Ni2+ - Se - Zn2+

代謝、異化、同化
一般
エネルギー代謝
(英語版)
好気呼吸
嫌気呼吸
  • 酸素以外の電子受容体
発酵
特定経路
タンパク質代謝(英語版)
炭水化物代謝
(炭水化物異化
and 同化)
ヒト
非ヒト
  • キシロース代謝(英語版)
  • Radiotrophic fungus(英語版)
脂質代謝
(脂肪分解,
脂質生合成)
脂肪酸代謝(英語版)
  • ステロイド代謝(英語版)
  • スフィンゴ脂質代謝(英語版)
  • イコサノイド代謝(英語版)
  • ケトーシス
  • コレステロール逆転送(英語版)
アミノ酸
核酸代謝(英語版)
その他
カテゴリ カテゴリ
代謝マップ
主要代謝経路の地下鉄路線図風の地図
炭素固定
光呼吸
ペントース
リン酸経路
クエン酸
回路
グリオキシ
ル酸回路
尿素回路
脂肪酸合成
脂肪酸伸長
β酸化
ペルオキシ
ソーム
β酸化


グリコーゲ
ン分解
グリコー
ゲン合成




ピルビン酸
脱炭酸反応
発酵
ケトン体分解
ケトン
体生成
糖新生
への供給路
直接/C4/CAM
炭素供給
明反応
酸化的
リン酸化
アミノ酸
脱アミノ化
クエン酸
シャトル
脂質生合成
脂肪分解
ステロイド生合成
メバロン酸経路
非メバロン酸経路
シキミ酸
経路
転写 & 複製
翻訳
タンパク質分解
グリコシル化


イノシトール
リン酸
ヘキソース
リン酸
トリオース
リン酸
グリセリン酸リン酸
ペントース
リン酸
テトロース
リン酸
プロピオ
ニルCoA
アセチル
CoA
グリセリン酸リン酸
グリオ
キシル酸
アセチル
CoA
オキサ
ロ酢酸
スクシ
ニル
CoA
アスパラ
ギン酸
コバラミン (ビタミンB12)
ビタミン
B群
カルシフェロー
ル (ビタミンD)
MEP
MVA
アセチル
CoA
グリセロ
リン脂質
スフィンゴ
糖脂質
多価不飽和
脂肪酸
内在性カン
ナビノイド
The image above contains clickable links
主要代謝経路路線図様の地図。任意のテキスト (経路名、代謝物名) をクリックすると該当する記事に移動する。 一重線:ほとんどの生活型に共通する経路。二重線:ヒトには存在しない経路 (植物、菌類、原核生物などに存在する) 。 オレンジ色の節: 炭水化物代謝 紫色の節: 光合成 赤色の節: 細胞呼吸 ピンク色の節: 細胞シグナル伝達 青色の節: アミノ酸代謝 灰色の節: ビタミンおよび補因子の代謝。 茶色の節: ヌクレオチドおよびタンパク質の代謝。 緑色の節: 脂質代謝
典拠管理データベース ウィキデータを編集
全般
  • FAST
国立図書館
  • フランス
  • BnF data
  • ドイツ
  • イスラエル
  • アメリカ
  • 日本
  • チェコ