Matéria nuclear

Física nuclear
Fenômenos
  • v
  • d
  • e

Matéria nuclear é um estado da matéria que consiste de prótons e nêutrons, comprimidos ao ponto deles formarem uma gás degenerado de Fermi.

Ocorrência natural

Aglomerados macroscópicos de matéria nuclear em equilíbrio termodinâmico tendem a ser eletricamente neutros, e contém principalmente nêutrons com alguma mistura adicional de prótons e elétrons. Uma estrela de nêutrons é uma grande aglomerado gravitacionalmente limitado de matéria nuclear eletricamente neutra, na qual a pressão vai de zero (na superfície) até um valor desconhecido no centro. Uma idealização comum é a matéria nuclear simétrica, a qual consiste de igual número de prótons e nêutrons, sem elétrons. Núcleos atômicos são aglomerados de aproximadamente simétrica matéria nuclear, ligados pela força nuclear forte (residual) a pressão zero.

Quando matéria nuclear é comprimida a suficientemente alta densidade, se espera, sobre as bases da liberdade assintótica da cromodinâmica quântica, que se tornará matéria quark, a qual é é um gás degenerado de Fermi de quarks.

Importância para física e a cosmologia

A física de íons pesados acelerados a velocidades relativísticas (parcelas significativas da velocidade da luz) tem como objetivo principal o estudo do comportamento da matéria nuclear em condições extremas de temperatura e pressão. Se espera que a matéria nuclear, ao ser extremamente comprimida ou aquecida, passe por transições de fase, gerando novos estados. Um dos estados teoricamente previstos para a matéria nuclear nestas condições é o chamado Plasma de Quarks e Glúons. Acredita-se que neste estado os quarks e glúons, constituintes mais elementares da matéria nuclear, não estariam mais confinados em hádrons, passando a formar um plasma de partículas livres.

Segundo a teoria cosmológica do Big Bang, esse seria uma das fases que o nosso Universo se apresentaria nos primeiros micro-segundos de sua existência.

Laboratorialmente, pode-se comprimir ou aquecer a matéria nuclear colidindo-se núcleos de elementos pesados, como o ouro ou o chumbo, a energias muitos altas (relativísticas), correspondentes as energias cinéticas a tais velocidades.

Tais pesquisas são de extrema importância para o entendimento da matéria nuclear, seus constituintes e a forma como eles interagem entre si (a chamada força nuclear forte). Elas devem trazer informações primordiais para a teoria da Cromodinâmica Quântica, que é a teoria fundamental que até o momento descreve melhor a interação forte.[1]

Desenvolvimentos

Seções de matéria de neutrino e taxas de interação são estudadas nos núcleos em colapso de supernovas, e muito provavelmente, para o mecanismo de explosão destes corpos celestes e o estudo do comportamento da matéria próton-nêutron implica como tais resíduos (núcleos) esfriam.[2]

Novas formas de matéria nuclear tem sido descobertas no CERN em experimentos a alta energia de íons de chumbo (160 GeV/núcleon, vezes 208 núcleons, para um total de energia de aproximadamente 33 TeV) com colisões em alvos fixos de átomos chumbo ou ouro.[3]

São investigados coeficientes de simetria de energia de matéria nuclear assimétrica como o inverso de matéria nuclear polarizada.[4]

Estuda-se as fases da matéria nuclear e as alterações no comportamento do gás ideal sob o qual são modelados em comportamento.[5]

Estuda-se as implicações das interações próton-nêutron em matérias nucleares frias, tais como possíveis em estrelas de nêutrons.[6]

Estuda-se o comportamento da matéria nuclear a partir da multifragmentação de dados da ISiS e EOS pelo formalismo de Fisher, modificado em acordo a energia de Coulomb procurando determinar os expoentes críticos, o coeficiente de energia de superfície, a curva de coexistência de matéria nuclear finita e a localização do ponto crítico.[7]

Discutem-se formas "exóticas" de matéria nuclear, como matéria hiperiônica, condensados "kaon" e matéria quark.[8] (em inglês)

Referências

  1. Reações Nucleares nos Regimes Relativístico e Astrofísico - www.dfn.if.usp.br
  2. Adam Burrows, Sanjay Reddy, Todd A. Thompson; Neutrino Opacities in Nuclear Matter; Nucl.Phys. A777 (2006) 356-394 - arxiv.org (em inglês)
  3. American Institute of Physics - www.aip.org (em inglês)
  4. Fábio L. Braghin; Symmetry energy coefficients for asymmetric nuclear matter; Braz. J. Phys. vol.33 no.2 São Paulo June 2003; doi: 10.1590/S0103-97332003000200015 - www.scielo.br (em inglês)
  5. Phillip F. Schewe and Ben Stein; Nuclear Matter Phase Changes Imply an "Ideal Gas" Aether Substrate; Physics News Update - www.rialian.com (em inglês)
  6. R. Subedi et al; Probing Cold Dense Nuclear Matter; Published Online May 29, 2008; Science DOI: 10.1126/science.1156675 - www.sciencemag.org (em inglês)
  7. J. B. Elliott et al; The coexistence curve of finite charged nuclear matter - www.osti.gov (em inglês)
  8. EXOTIC STATES OF NUCLEAR MATTER; Proceedings of the International Symposium EXOCT07; Catania University, Italy 11 - 15 June 2007 - www.worldscibooks.com

Ligações externas

  • Investigando as propriedades da matéria nuclear em colisões de íons pesados relativísticos; Luiz Fernando Mackedanz; L. F. Mackedanz - IV Mostra PG - 27 Out 2005 - www.if.ufrgs.br
  • Phases of Nuclear Matter - www.lbl.gov (em inglês)
  • Nuclear Matter Physics - www.gsi.de (em inglês)

Ver também

Ícone de esboço Este artigo sobre física é um esboço. Você pode ajudar a Wikipédia expandindo-o.
  • v
  • d
  • e