Extremwertverteilung

Beispiele der Wahrscheinlichkeitsdichtefunktionen der Extremwertverteilungsfamilie.

Die verallgemeinerte Extremwertverteilung[1][2] ist eine stetige Wahrscheinlichkeitsverteilung. Sie spielt eine herausragende Rolle in der Extremwerttheorie, da sie alle möglichen asymptotischen Verteilungen des Maximums einer einfachen Zufallsstichprobe in einer Darstellung zusammenfasst. Die verallgemeinerte Extremwertverteilung fasst die Gumbel-Verteilung, die Fréchet-Verteilung und die Weibull-Verteilung zusammen.

Definition

Eine stetige Zufallsgröße X {\displaystyle X} genügt einer verallgemeinerten Extremwertverteilung mit den Parametern μ R {\displaystyle \mu \in \mathbb {R} } , σ > 0 {\displaystyle \sigma >0} und ξ R {\displaystyle \xi \in \mathbb {R} } , wenn sie die Wahrscheinlichkeitsdichte

f ( x ) = { 1 σ t ( x ) ξ + 1 e t ( x ) falls  1 + ξ ( x μ σ ) > 0 0 sonst {\displaystyle f(x)={\begin{cases}{\frac {1}{\sigma }}\,t(x)^{\xi +1}e^{-t(x)}&{\text{falls }}1+\xi ({\tfrac {x-\mu }{\sigma }})>0\\0&{\text{sonst}}\end{cases}}}

mit

t ( x ) = { ( 1 + ξ ( x μ σ ) ) 1 / ξ falls   ξ 0 e ( x μ ) / σ falls   ξ = 0 {\displaystyle t(x)={\begin{cases}{\big (}1+\xi ({\tfrac {x-\mu }{\sigma }}){\big )}^{-1/\xi }&{\textrm {falls}}\ \xi \neq 0\\e^{-(x-\mu )/\sigma }&{\textrm {falls}}\ \xi =0\end{cases}}}

besitzt. Für ξ = 0 {\displaystyle \xi =0} liegt eine Gumbel-Verteilung, für ξ > 0 {\displaystyle \xi >0} eine Fréchet-Verteilung und für ξ < 0 {\displaystyle \xi <0} eine Weibull-Verteilung vor.

Einzelnachweise

  1. Paul Embrechts, Claudia Klüppelberg, Thomas Mikosch: Modelling Extremal Events for Insurance and Finance. Springer, Berlin 1997, ISBN 3-540-60931-8, S. 152–168.
  2. Eric W. Weisstein: Extreme Value Distribution. Abgerufen am 6. August 2021 (englisch). 
Diskrete univariate Verteilungen

Diskrete univariate Verteilungen für endliche Mengen:
Benford | Bernoulli | beta-binomial | binomial | Dirac | diskret uniform | empirisch | hypergeometrisch | kategorial | negativ hypergeometrisch | Rademacher | verallgemeinert binomial | Zipf | Zipf-Mandelbrot | Zweipunkt

Diskrete univariate Verteilungen für unendliche Mengen:
Boltzmann | Conway-Maxwell-Poisson | discrete-Phase-Type | erweitert negativ binomial | Gauss-Kuzmin | gemischt Poisson | geometrisch | logarithmisch | negativ binomial | parabolisch-fraktal | Poisson | Skellam | verallgemeinert Poisson | Yule-Simon | Zeta

Kontinuierliche univariate Verteilungen

Kontinuierliche univariate Verteilungen mit kompaktem Intervall:
Beta | Cantor | Kumaraswamy | raised Cosine | Dreieck | Trapez | U-quadratisch | stetig uniform | Wigner-Halbkreis

Kontinuierliche univariate Verteilungen mit halboffenem Intervall:
Beta prime | Bose-Einstein | Burr | Chi | Chi-Quadrat | Coxian | Erlang | Exponential | Extremwert | F | Fermi-Dirac | Folded normal | Fréchet | Gamma | Gamma-Gamma | verallgemeinert invers Gauß | halblogistisch | halbnormal | Hartman-Watson | Hotellings T-Quadrat | hyper-exponentiale | hypoexponential | invers Chi-Quadrat | scale-invers Chi-Quadrat | Invers Normal | Invers Gamma | Kolmogorow-Verteilung | Lévy | log-normal | log-logistisch | Maxwell-Boltzmann | Maxwell-Speed | Nakagami | nichtzentriert Chi-Quadrat | Pareto | Phase-Type | Rayleigh | relativistisch Breit-Wigner | Rice | Rosin-Rammler | shifted Gompertz | truncated normal | Type-2-Gumbel | Weibull | Wilks’ Lambda

Kontinuierliche univariate Verteilungen mit unbeschränktem Intervall:
Cauchy | Extremwert | exponential Power | Fishers z | Fisher-Tippett (Gumbel) | generalized hyperbolic | Hyperbolic-secant | Landau | Laplace | alpha-stabil | logistisch | normal (Gauß) | normal-invers Gauß’sch | Skew-normal | Studentsche t | Type-1-Gumbel | Variance-Gamma | Voigt

Multivariate Verteilungen

Diskrete multivariate Verteilungen:
Dirichlet compound multinomial | Ewens | gemischt Multinomial | multinomial | multivariat hypergeometrisch | multivariat Poisson | negativmultinomial | Pólya/Eggenberger | polyhypergeometrisch

Kontinuierliche multivariate Verteilungen:
Dirichlet | GEM | generalized Dirichlet | multivariat normal | multivariat Student | normalskaliert invers Gamma | Normal-Gamma | Poisson-Dirichlet

Multivariate Matrixverteilungen:
Gleichverteilung auf der Stiefel-Mannigfaltigkeit | Invers Wishart | Matrix Beta | Matrix Gamma | Matrix invers Beta | Matrix invers Gamma | Matrix Normal | Matrix Student-t | Matrix-Von-Mises-Fisher-Verteilung | Normal-invers-Wishart | Normal-Wishart | Wishart