Lévy-Verteilung

Lévy-Verteilungen (benannt nach dem französischen Mathematiker Paul Lévy) sind eine Familie von Wahrscheinlichkeitsverteilungen mit der besonderen Eigenschaft eines jeweils unendlichen Erwartungswerts.

Definition

Lévy-Dichtefunktionen verschiedener Skalierung und μ=0

Die Dichtefunktion der Lévy-Verteilungen lautet

f ( x ) = γ 2 π 1 ( x μ ) 3 / 2 exp ( γ 2 ( x μ ) ) , x > μ {\displaystyle f(x)={\sqrt {\frac {\gamma }{2\pi }}}\cdot {\frac {1}{(x-\mu )^{3/2}}}\cdot \exp \left(-{\frac {\gamma }{2(x-\mu )}}\right),\quad x>\mu } ., mit den beiden Parametern γ > 0 , μ R {\displaystyle \gamma >0,\,\mu \in \mathbb {R} } .
  • μ {\displaystyle \mu } ist ein Lageparameter und definiert die Position auf der x {\displaystyle x} -Achse;
  • γ {\displaystyle \gamma } ist ein Skalenparameter (Stauchung für γ < 1 {\displaystyle \gamma <1} ; Streckung für γ > 1 {\displaystyle \gamma >1} ).

Standard-Lévy-Verteilung

Die Standard-Lévy-Verteilung ist die Lévy-Verteilung mit den Parameterwerten γ = 1 , μ = 0 {\displaystyle \gamma =1,\mu =0} ; ihre Dichtefunktion lautet damit:

f ( x ) = 1 2 π x 3 e 1 2 x , x > 0 {\displaystyle f(x)={\frac {1}{\sqrt {2\pi \cdot x^{3}}}}\cdot e^{-{\frac {1}{2x}}},\quad x>0} .

Eigenschaften

Die Standard-Lévy-Verteilung gehört (wie die Normalverteilung und die Cauchy-Verteilung) zur übergeordneten Familie der alpha-stabilen Verteilungen, d. h., sie erfüllt die Bedingung:

( X 1 + X 2 + + X n ) n 1 / α X {\displaystyle (X_{1}+X_{2}+\dotsb +X_{n})\sim n^{1/\alpha }X}

(hier mit α = 1 / 2 {\displaystyle \alpha =1/2} ) für alle unabhängigen Standard-Lévy-verteilten Zufallsgrößen X 1 , X 2 , , X n , X {\displaystyle X_{1},X_{2},\ldots ,X_{n},X} . Da die Theorie der α {\displaystyle \alpha } -stabilen Verteilungen maßgeblich von Lévy mitgestaltet wurde, spricht man, um Verwechslungen vorzubeugen, auch oft von der eigentlichen Lévy-Verteilung.

Momente

Die Lévy-Verteilung besitzt keinen endlichen Erwartungswert, denn es gilt E ( | X | ) = {\displaystyle \operatorname {E} (|X|)=\infty } . Die Lévy-Verteilung gehört somit zu den Verteilungen mit schweren Rändern, die vor allem dazu verwendet werden, extreme Ereignisse (z. B. einen Börsencrash in der Finanzmathematik) zu modellieren.

Anwendung

Mit der Lévy-Verteilung lassen sich verschiedene Phänomene insbesondere in der Natur beschreiben:

Einzelnachweise

  1. Applebaum, D.: Lectures on Lévy processes and Stochastic calculus, Braunschweig; Lecture 2: Lévy processes. (PDF; 282 kB) University of Sheffield, 22. Juli 2010, S. 37–53, abgerufen am 13. Juni 2014. 
  2. Belle Dumé: Geomagnetic flip may not be random after all. In: physicsworld.com. 21. März 2006, abgerufen am 13. Juni 2014. 
  3. Lisa Zyga: Musical melodies obey same laws as foraging animals. In: phys.org. Science X Network, 8. Januar 2016, abgerufen am 23. April 2023 (englisch). 
  4. Lisa Zyga: Musical melodies obey same laws as foraging animals. In: phys.org. Science X Network, 8. Januar 2016, abgerufen am 23. April 2023 (englisch). 
  5. Lisa Zyga: Musical melodies obey same laws as foraging animals. In: phys.org. Science X Network, 8. Januar 2016, abgerufen am 23. April 2023 (englisch). 
Diskrete univariate Verteilungen

Diskrete univariate Verteilungen für endliche Mengen:
Benford | Bernoulli | beta-binomial | binomial | Dirac | diskret uniform | empirisch | hypergeometrisch | kategorial | negativ hypergeometrisch | Rademacher | verallgemeinert binomial | Zipf | Zipf-Mandelbrot | Zweipunkt

Diskrete univariate Verteilungen für unendliche Mengen:
Boltzmann | Conway-Maxwell-Poisson | discrete-Phase-Type | erweitert negativ binomial | Gauss-Kuzmin | gemischt Poisson | geometrisch | logarithmisch | negativ binomial | parabolisch-fraktal | Poisson | Skellam | verallgemeinert Poisson | Yule-Simon | Zeta

Kontinuierliche univariate Verteilungen

Kontinuierliche univariate Verteilungen mit kompaktem Intervall:
Beta | Cantor | Kumaraswamy | raised Cosine | Dreieck | Trapez | U-quadratisch | stetig uniform | Wigner-Halbkreis

Kontinuierliche univariate Verteilungen mit halboffenem Intervall:
Beta prime | Bose-Einstein | Burr | Chi | Chi-Quadrat | Coxian | Erlang | Exponential | Extremwert | F | Fermi-Dirac | Folded normal | Fréchet | Gamma | Gamma-Gamma | verallgemeinert invers Gauß | halblogistisch | halbnormal | Hartman-Watson | Hotellings T-Quadrat | hyper-exponentiale | hypoexponential | invers Chi-Quadrat | scale-invers Chi-Quadrat | Invers Normal | Invers Gamma | Kolmogorow-Verteilung | Lévy | log-normal | log-logistisch | Maxwell-Boltzmann | Maxwell-Speed | Nakagami | nichtzentriert Chi-Quadrat | Pareto | Phase-Type | Rayleigh | relativistisch Breit-Wigner | Rice | Rosin-Rammler | shifted Gompertz | truncated normal | Type-2-Gumbel | Weibull | Wilks’ Lambda

Kontinuierliche univariate Verteilungen mit unbeschränktem Intervall:
Cauchy | Extremwert | exponential Power | Fishers z | Fisher-Tippett (Gumbel) | generalized hyperbolic | Hyperbolic-secant | Landau | Laplace | alpha-stabil | logistisch | normal (Gauß) | normal-invers Gauß’sch | Skew-normal | Studentsche t | Type-1-Gumbel | Variance-Gamma | Voigt

Multivariate Verteilungen

Diskrete multivariate Verteilungen:
Dirichlet compound multinomial | Ewens | gemischt Multinomial | multinomial | multivariat hypergeometrisch | multivariat Poisson | negativmultinomial | Pólya/Eggenberger | polyhypergeometrisch

Kontinuierliche multivariate Verteilungen:
Dirichlet | GEM | generalized Dirichlet | multivariat normal | multivariat Student | normalskaliert invers Gamma | Normal-Gamma | Poisson-Dirichlet

Multivariate Matrixverteilungen:
Gleichverteilung auf der Stiefel-Mannigfaltigkeit | Invers Wishart | Matrix Beta | Matrix Gamma | Matrix invers Beta | Matrix invers Gamma | Matrix Normal | Matrix Student-t | Matrix-Von-Mises-Fisher-Verteilung | Normal-invers-Wishart | Normal-Wishart | Wishart